By Topic

Maximum likelihood array processing in spatially correlated noise fields using parameterized signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Viberg, M. ; Inf. Syst. Lab., Stanford Univ., CA, USA ; Stoica, Petre ; Ottersten, B.

This paper deals with the problem of estimating signal parameters using an array of sensors. This problem is of interest in a variety of applications, such as radar and sonar source localization. A vast number of estimation techniques have been proposed in the literature during the past two decades. Most of these can deliver consistent estimates only if the covariance matrix of the background noise is known. In many applications, the aforementioned assumption is unrealistic. Recently, a number of contributions have addressed the problem of signal parameter estimation in unknown noise environments based on various assumptions on the noise. Herein, a different approach is taken. We assume instead that the signals are partially known. The received signals are modeled as linear combinations of certain known basis functions. The exact maximum likelihood (ML) estimator for the problem at hand is derived, as well as computationally more attractive approximation. The Cramer-Rao lower bound (CRB) on the estimation error variance is also derived and found to coincide with the CRB, assuming an arbitrary deterministic model and known noise covariance

Published in:

Signal Processing, IEEE Transactions on  (Volume:45 ,  Issue: 4 )