By Topic

A new self organizing multi-objective optimization method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ismai, F.S. ; Center of Artificial Intell. & Robotic (CAIRO), Univ. Teknol. Malaysia, Kuala Lumpur, Malaysia ; Yusof, R.

This paper presents a new optimization method for solving multi-objective problems using a weighted-sum genetic algorithm (WSGA) method. This method is more popular because it is a straight forward fitness formulation and computationally efficient. However, this approach has some limitations because of the difficulty in selecting an appropriate weight for each objective and the need for some knowledge about the problems. The weight selection is usually based on trial and error and which impractical for complex engineering problems. In order to overcome these problems, the authors of this paper propose a new self organizing genetic algorithm (SOGA) for multi-objective optimization problems. The SOGA involves GA within the GA evaluation process which optimally tunes the weight of each objective function and applies a weighted-sum approach for fitness evaluation process. This algorithm has been tested for optimization of components placement on printed circuit board. The results show that SOGA is able to obtain a better minimum value as compared to random weight GA method.

Published in:

Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on

Date of Conference:

10-13 Oct. 2010