Cart (Loading....) | Create Account
Close category search window
 

Approaching Throughput-Optimality in Distributed CSMA Scheduling Algorithms With Collisions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiang, L. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, Berkeley, CA, USA ; Walrand, J.

It was shown recently that carrier sense multiple access (CSMA)-like distributed algorithms can achieve the maximal throughput in wireless networks (and task processing networks) under certain assumptions. One important but idealized assumption is that the sensing time is negligible, so that there is no collision. In this paper, we study more practical CSMA-based scheduling algorithms with collisions. First, we provide a Markov chain model and give an explicit throughput formula that takes into account the cost of collisions and overhead. The formula has a simple form since the Markov chain is “almost” time-reversible. Second, we propose transmission-length control algorithms to approach throughput-optimality in this case. Sufficient conditions are given to ensure the convergence and stability of the proposed algorithms. Finally, we characterize the relationship between the CSMA parameters (such as the maximum packet lengths) and the achievable capacity region.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:19 ,  Issue: 3 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.