By Topic

MRF-Based Intensity Invariant Elastic Registration of Cardiac Perfusion Images Using Saliency Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mahapatra, D. ; Dept. of Electr. & Comput. Eng. ing, Nat. Univ. of Singapore, Singapore, Singapore ; Ying Sun

In this paper, we propose a Markov random field based method that uses saliency and gradient information for elastic registration of dynamic contrast enhanced (DCE) magnetic resonance (MR) images of the heart. DCE-MR images are characterized by rapid intensity changes over time, thus posing challenges for conventional intensity-based registration methods. Saliency information contributes to a contrast invariant metric to identify similar regions in spite of contrast enhancement. Its robustness and accuracy are attributed to a close adherence to a neurobiological model of the human visual system (HVS). The HVS has a remarkable ability to match images in the face of intensity changes and noise. This ability motivated us to explore the efficacy of such a model for registering DCE-MR images. The data penalty is a combination of saliency and gradient information. The smoothness cost depends upon the relative displacement and saliency difference of neigh boring pixels. Saliency is also used in a modified narrow band graph cut framework to identify relevant pixels for registration, thus reducing the number of graph nodes and computation time. Experimental results on real patient images demonstrate superior registration accuracy for a combination of saliency and gradient information over other similarity metrics.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 4 )