By Topic

Fully Automated Reduction of Ocular Artifacts in High-Dimensional Neural Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kelly, J.W. ; Dept. of Electr. & Comput. Engi neering, Carnegie Mellon Univ., Pittsburgh, PA, USA ; Siewiorek, D.P. ; Smailagic, A. ; Collinger, J.L.
more authors

The reduction of artifacts in neural data is a key element in improving analysis of brain recordings and the development of effective brain-computer interfaces. This complex problem becomes even more difficult as the number of channels in the neural recording is increased. Here, new techniques based on wavelet thresholding and independent component analysis (ICA) are developed for use in high-dimensional neural data. The wavelet technique uses a discrete wavelet transform with a Haar basis function to localize artifacts in both time and frequency before removing them with thresholding. Wavelet decomposition level is automatically selected based on the smoothness of artifactual wavelet approximation coefficients. The ICA method separates the signal into independent components, detects artifactual components by measuring the offset between the mean and median of each component, and then removing the correct number of components based on the aforementioned offset and the power of the reconstructed signal. A quantitative method for evaluating these techniques is also presented. Through this evaluation, the novel adaptation of wavelet thresholding is shown to produce superior reduction of ocular artifacts when compared to regression, principal component analysis, and ICA.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 3 )