Cart (Loading....) | Create Account
Close category search window
 

A 32-Gb MLC NAND Flash Memory With Vth Endurance Enhancing Schemes in 32 nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

25 Author(s)
Changhyuk Lee ; Flash Dev. Div., Hynix Semicond. Inc., Icheon, South Korea ; Sok-Kyu Lee ; Sunghoon Ahn ; Jinhaeng Lee
more authors

Novel program and read schemes are presented to break barriers in scaling of NAND flash memory such as threshold voltage endurance from floating gate interference, and charge loss tolerance. To enhance threshold voltage endurance and charge loss tolerance, we introduced three schemes; MSB Re-PGM scheme, Moving Read scheme and Adaptive Code Selection scheme. Using the MSB Re-PGM scheme, threshold voltage distribution width is improved about 200 mV. The PGM throughput is enhanced from 1500 μs to 1250 μs. With the Moving Read scheme about half order of UBER is improved with 10 bit ECC. Also, Adaptive Code Selection scheme are used to decrease a current consumption. There is 5.5% current reduction. With these techniques, 32-Gb MLC NAND flash memory has been fabricated using a 32 nm CMOS process technology. Its program throughput reaches 13.0 MB/s at a multi-plane program operation with cache operation keeping a desirable threshold voltage distribution.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:46 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.