By Topic

Channel sharing in multi-hop WDM lightwave networks: realization and performance of multicast traffic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tridandapani, S.B. ; Dept. of Electr. Eng. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; Mukherjee, B.

A local lightwave network can be constructed by employing two-way fibers to connect nodes in a passive-star physical topology, and the available optical bandwidth may be effectively accessed by the nodal transmitters and receivers at electronic rates using wavelength division multiplexing (WDM). The number of channels, ω, in a WDM network is limited by technology and is usually less than the number of nodes, N, in the network. We provide a general method using channel sharing to construct practical multi-hop networks under this limitation. Channel sharing may be achieved through time division multiplexing. The method is applied to a generalized shuffle-exchange-based multi-hop architecture, called GEMNET. Multicasting-the ability to transmit information from a single source node to multiple destination nodes-is becoming an important requirement in high-performance networks. Multicasting, if improperly implemented, can be bandwidth-abusive. Channel sharing is one approach toward efficient management of multicast traffic. We develop a general modeling procedure for the analysis of multicast (point-to-multipoint) traffic in shared-channel, multihop WDM networks. The analysis is comprehensive in that it considers all components of delay that packets in the network experience-namely, synchronization, queuing, transmission, and propagation. The results show that, in the presence of multicast traffic, WDM networks with ω<N channels may actually perform better than networks with ω⩾N channels

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:15 ,  Issue: 3 )