By Topic

Object-based coding of stereo image sequences using joint 3-D motion/disparity compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tzovaras, D. ; Dept. of Electr. & Comput. Eng., Aristotle Univ. of Thessaloniki, Greece ; Grammalidis, N. ; Strintzis, M.G.

An object-based coding scheme is proposed for the coding of a stereoscopic image sequence using motion and disparity information. A hierarchical block-based motion estimation approach is used for initialization, while disparity estimation is performed using a pixel-based hierarchical dynamic programming algorithm. A split-and-merge segmentation procedure based on three-dimensional (3-D) motion modeling is then used to determine regions with similar motion parameters. The segmentation part of the algorithm is interleaved with the estimation part in order to optimize the coding performance of the procedure. Furthermore, a technique is examined for propagating the segmentation information with time. A 3-D motion-compensated prediction technique is used for both intensity and depth image sequence coding. Error images and depth maps are encoded using discrete cosine transform (DCT) and Huffman methods. Alternately, an efficient wireframe depth modeling technique may be used to convey depth information to the receiver. Motion and wireframe model parameters are then quantized and transmitted to the decoder along with the segmentation information. As a straightforward application, the use of the depth map information for the generation of intermediate views at the receiver is also discussed. The performance of the proposed compression methods is evaluated experimentally and is compared to other stereoscopic image sequence coding schemes

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:7 ,  Issue: 2 )