Cart (Loading....) | Create Account
Close category search window
 

An optimal solution to the MCDS problem for topology construction in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wightman, P.M. ; Dept. of Syst. Eng., Univ. del Norte, Barranquilla, Colombia ; Fabregasy, A. ; Labradorz, M.A.

Topology Construction (TC) is a very well-known technique to save energy and extend the lifetime of wireless sensor networks. One common approach to implement TC is to select a small subset of nodes that can accomplish the global objective of the network and put the rest of the nodes in a low energy consumption mode to use their energy in the future. One way to select this subset of nodes is by solving the Minimum Connected Dominating Set problem (MCDS). This paper presents a Mixed Integer Programming (MIP) formulation that finds the optimal solution to this problem. The formulation is proposed as a benchmarking tool to compare the performance of existing and new heuristics that approximate the solution to the same problem. In fact, the paper compares the performance of three well-known CDS-based topology construction protocols versus the MIP-MCDS formulation. The results show that, in terms of the size of the CDS, the distance between the optimal and the approximate solutions increases with the communication radius and the number of nodes. In terms of the solution time, for low density and high node degree topologies the mathematical programming formulation is comparable, and sometimes better, to that of the heuristics. However, in topologies with low node degree and high node density the heuristic solutions outperform the mathematical programming solution.

Published in:

Communications (LATINCOM), 2010 IEEE Latin-American Conference on

Date of Conference:

15-17 Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.