By Topic

Low Latency GF(2^{m}) Polynomial Basis Multiplier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Imaña, J.L. ; Dept. of Comput. Archit. & Syst. Eng., Complutense Univ., Madrid, Spain

Finite field GF(2m) arithmetic is becoming increasingly important for a variety of different applications including cryptography, coding theory and computer algebra. Among finite field arithmetic operations, GF(2m) multiplication is of special interest because it is considered the most important building block. This contribution describes a new low latency parallel-in/parallel-out sequential polynomial basis multiplier over GF(2m). For irreducible GF(2m) generating polynomials f(x)=xm+xkt+xkt-1+⋯+xk1+1 with m ≥ 2kt-1, the proposed multiplier has a theoretical latency of 2kt+1 cycles . This latency is the lowest one found in the literature for GF(2m) multipliers. Furthermore, the condition m ≥ 2kt-1 is specially important because the five binary irreducible polynomials recommended by NIST for elliptic curve cryptography (ECC) implementation verify this condition.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 5 )