By Topic

A 76 dB \Omega 1.7 GHz 0.18 \mu m CMOS Tunable TIA Using Broadband Current Pre-Amplifier for High Frequency Lateral MEMS Oscillators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hossein Miri Lavasani ; School of ECE, Georgia Institute of Technology, Atlanta, ; Wanling Pan ; Brandon Harrington ; Reza Abdolvand
more authors

This paper reports on the design and characterization of a high-gain tunable transimpedance amplifier (TIA) suitable for gigahertz oscillators that use high-Q lateral micromechanical resonators with large motional resistance and large shunt parasitic capacitance. The TIA consists of a low-power broadband current pre-amplifler combined with a current-to-voltage conversion stage to boost the input current before delivering it to feedback voltage amplifiers. Using this approach, the TIA achieves a constant gain of 76 dB-Ohm up to 1.7 GHz when connected to a 2 pF load at the input and output with an input-referred noise below 10 pA/√(Hz) in the 100 MHz to 1 GHz range. The TIA is fabricated in a 1P6M 0.18 μm CMOS process and consumes 7.2 mW. To demonstrate its performance in high frequency lateral micromechanical oscillator applications, the TIA is wirebonded to a 724 MHz high-motional resistance (Qunloaded ≈ 2000, Rm ≈ 750 Ω, CP ≈ 2 pF) and a 1.006 GHz high-parasitic (Qunloaded ≈ 7100, Rm ≈ 150 Ω, CP ≈ 3.2 pF) AIN-on-Silicon resonator. The 724 MHz and 1.006 GHz oscillators achieve phase-noise better than -87 dBc/Hz and -94 dBc/Hz @ 1 kHz offset, respectively, with a floor around -154 dBc/Hz. The 1.006 GHz oscillator achieves the highest reported figure of merit (FoM) among lateral piezoelectric micromechanical oscillators and meets the phase-noise requirements for most 2G and 3G cellular standards including GSM 900 MHz, GSM 1800 MHz, and HSDPA.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:46 ,  Issue: 1 )