By Topic

Computational Study of Edge Configuration and Quantum Confinement Effects on Graphene Nanoribbon Transport

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sako, R. ; Dept. of Electr. & Electron. Eng., Kobe Univ., Kobe, Japan ; Hosokawa, H. ; Tsuchiya, H.

We investigated edge configuration and quantum confinement effects on electron transport in armchair-edged graphene nanoribbons (A-GNRs) by using a computational approach. We found that the edge bond relaxation has a significant influence not only on the bandgap energy but also on the electron effective mass. We also found that A-GNRs with N = 3m family (N is the number of atoms in its transverse direction, and m is a positive integer) exhibits smaller effective mass by comparing it at the same bandgap energy. As a result, A-GNRs with N = 3m family are found to be favorable for use in channels of field-effect transistors.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 1 )