By Topic

A new data mining based network Intrusion Detection model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gudadhe, M. ; Dept. of Inf. Technol., Priyadarshini Coll. of Eng., Nagpur, India ; Prasad, P. ; Wankhade, K.

Nowadays, as information systems are more open to the Internet, the importance of secure networks is tremendously increased. New intelligent Intrusion Detection Systems (IDSs) which are based on sophisticated algorithms rather than current signature-base detections are in demand. There is often the need to update an installed Intrusion Detection System (IDS) due to new attack methods or upgraded computing environments. Since many current Intrusion Detection Systems are constructed by manual encoding of expert knowledge, changes to them are expensive and slow. In data mining-based intrusion detection system, we should make use of particular domain knowledge in relation to intrusion detection in order to efficiently extract relative rules from large amounts of records. This paper proposes new ensemble boosted decision tree approach for intrusion detection system. Experimental results shows better results for detecting intrusions as compared to others existing methods.

Published in:

Computer and Communication Technology (ICCCT), 2010 International Conference on

Date of Conference:

17-19 Sept. 2010