By Topic

Decision level fusion for pulse signal classification using multiple features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Danbing Jia ; Harbin Binghua Hospital, China ; Naimin Li ; Shan Liu ; Shiwei Li

With the progress in sensing and analysis techniques, computerized pulse diagnosis has been developed to improve the reliability and consistency in traditional Chinese pulse diagnosis. A number of feature extraction methods have been proposed to extract spatial, frequency features from pulse signal. In this paper, we first extract three kinds of features, spatial, frequency, and similarity features, and then use support vector machine to train three individual classifiers. Finally, we propose a decision level fusion approach to combine these three classifiers for pulse signal classification by using different fusion rules. The proposed method is evaluated on a data set which includes 135 healthy people and 98 patients. Experimental results show that the proposed approach achieves an average classification accuracy of 93.13%.

Published in:

2010 3rd International Conference on Biomedical Engineering and Informatics  (Volume:2 )

Date of Conference:

16-18 Oct. 2010