By Topic

Extended Input Space Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ricardo Santiago-Mozos ; College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland ; Fernando Perez-Cruz ; Antonio Artes-Rodriguez

In some applications, the probability of error of a given classifier is too high for its practical application, but we are allowed to gather more independent test samples from the same class to reduce the probability of error of the final decision. From the point of view of hypothesis testing, the solution is given by the Neyman-Pearson lemma. However, there is no equivalent result to the Neyman-Pearson lemma when the likelihoods are unknown, and we are given a training dataset. In this brief, we explore two alternatives. First, we combine the soft (probabilistic) outputs of a given classifier to produce a consensus labeling for test samples. In the second approach, we build a new classifier that directly computes the label for test samples. For this second approach, we need to define an extended input space training set and incorporate the known symmetries in the classifier. This latter approach gives more accurate results, as it only requires an accurate classification boundary, while the former needs an accurate posterior probability estimate for the whole input space. We illustrate our results with well-known databases.

Published in:

IEEE Transactions on Neural Networks  (Volume:22 ,  Issue: 1 )