Cart (Loading....) | Create Account
Close category search window

High-Frequency High-Efficiency CLL Resonant Converters With Synchronous Rectifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Daocheng Huang ; Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Dianbo Fu ; Lee, F.C. ; Pengju Kong

This paper proposes a CLL resonant dc-dc converter as an option for offline applications. This topology can achieve zero-voltage switching from zero load to a full load and zero-current switching for output rectifiers and makes the implementation of a secondary rectifier easy. This paper also presents a novel methodology for designing CLL resonant converters based on efficiency and holdup time requirements. An optimal transformer structure is proposed, which uses a current-type synchronous rectifier (SR) drive scheme. An 800-kHz 250-W CLL resonant converter prototype is built to verify the proposed circuit, design method, transformer structure, and SR drive scheme.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 8 )

Date of Publication:

Aug. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.