By Topic

Segmentation of Liver Vasculature From Contrast Enhanced CT Images Using Context-Based Voting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yanling Chi ; Biomed. Imaging Lab., A*STAR, Singapore, Singapore ; Jimin Liu ; Venkatesh, S.K. ; Su Huang
more authors

A novel vessel context-based voting is proposed for automatic liver vasculature segmentation in CT images. It is able to conduct full vessel segmentation and recognition of multiple vasculatures effectively. The vessel context describes context information of a voxel related to vessel properties, such as intensity, saliency, direction, and connectivity. Voxels are grouped to liver vasculatures hierarchically based on vessel context. They are first grouped locally into vessel branches with the advantage of a vessel junction measurement and then grouped globally into vasculatures, which is implemented using a multiple feature point voting mechanism. The proposed method has been evaluated on ten clinical CT datasets. Segmentation of third-order vessel trees from CT images (0.76 × 0.76 × 2.0 mm) of the portal venous phase takes less than 3 min on a PC with 2.0 GHz dual core processor and the average segmentation accuracy is up to 98%.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 8 )