By Topic

Context-Dependent Kernels for Object Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hichem Sahbi ; CNRS, LTCI Lab, Telecom ParisTech, Paris ; Jean-Yves Audibert ; Renaud Keriven

Kernels are functions designed in order to capture resemblance between data and they are used in a wide range of machine learning techniques, including support vector machines (SVMs). In their standard version, commonly used kernels such as the Gaussian one show reasonably good performance in many classification and recognition tasks in computer vision, bioinformatics, and text processing. In the particular task of object recognition, the main deficiency of standard kernels such as the convolution one resides in the lack in capturing the right geometric structure of objects while also being invariant. We focus in this paper on object recognition using a new type of kernel referred to as "context dependent.” Objects, seen as constellations of interest points, are matched by minimizing an energy function mixing 1) a fidelity term which measures the quality of feature matching, 2) a neighborhood criterion which captures the object geometry, and 3) a regularization term. We will show that the fixed point of this energy is a context-dependent kernel which is also positive definite. Experiments conducted on object recognition show that when plugging our kernel into SVMs, we clearly outperform SVMs with context-free kernels.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:33 ,  Issue: 4 )