By Topic

Spectral analysis techniques with Kalman filtering for estimating power quality indices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zolfaghari, R. ; Comput. Eng., Univ. of New South Wales, Sydney, NSW, Australia ; Shrivastava, Y. ; Agelidis, V.G. ; Chu, G.M.L.

This paper presents the theory, design and implementation of two real time virtual instruments to measure the power quality indices such as current harmonic distortion, voltage harmonic distortion and power factor as given by the IEEE standard. Different windowing techniques are explored in the estimation of the spectra. Cross spectral analysis is used for the measurement of phase angles in voltage and current signal. The virtual instrument integrates digital signal processing (DSP) methods such as windowing techniques and Cross-spectral density estimation with Welch spectral estimation to calculate voltage and current phasors. Moreover a tunable Kalman filter with a forgetting factor is applied to further enhance the results due to noise in the measurement. Simulations followed by a real time experiment using a rectified AC waveform applied across an RL circuit is followed to support the theoretical claims and further to show the robustness of the virtual instruments. Finally the two instruments are compared with each other in terms of performance and speed.

Published in:

Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010 IEEE PES

Date of Conference:

11-13 Oct. 2010