By Topic

A Semianalytical Spectral Element Method for the Analysis of 3-D Layered Structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiefu Chen ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Bao Zhu ; Wanxie Zhong ; Qing Huo Liu

A semianalytical spectral element method (SEM) is proposed for electromagnetic simulations of 3-D layered structures. 2-D spectral elements are employed to discretize the cross section of a layered structure, and the Legendre transformation is then used to cast the semidiscretized problem from the Lagrangian system into the Hamiltonian system. A Riccati equation-based high precision integration method is utilized to perform integration along the longitudinal direction, which is the undiscretized direction, to generate the stiffness matrix of the whole layered structure. The final system of equations by the semianalytical SEM will take the form of a set of linear equations with a block tri-diagonal matrix, which can be solved efficiently by the block Thomas algorithm. Numerical examples demonstrate the high efficiency and accuracy of the proposed method.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 1 )