By Topic

Low Porosity FeSe Preferred Orientation Crystal Growth by Bridgman Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chia-Ming Yang ; Dept. of Mater. Sci. & Eng., Nat. Cheng-Kung Univ., Tainan, Taiwan ; Po-Wei Chen ; Jui-Chao Kou ; Diko, P.
more authors

The new kind of iron-based superconductor FeSe which has being widely studied recently is arsenic-free and has about 8 K of Tc. The less poisonous and simple binary FeSe is interesting for both scientific studies and engineering applications, even though its Tc is lower than that of other iron-based compounds. Recently, the single crystal and thin film technology of FeSe has been studied to realize the anisotropic property. In our study, the highly preferred orientation poly-crystal was grown by the Bridgman method. The vacuum condition during growth affects the porosity of FeSe. It is difficult to produce high density under 1 atmosphere even when maintained at high temperature for a long time. When the pressure is controlled at less than 10-1 torr, ultra low porosity (and high density) crystal can be grown. Polarized optical microscope images show the single crystal domain up to about 5 mm with (110) preferred orientation by XRD analysis. A XRD peak shift is observed between samples grown by furnace-cooling and the Bridgman method, which is supposed to be due to residual stress during growth. It also induced a Tc decrease to 5.9 K in the Bridgman sample, but recovered to 6.8 K after annealing. From the microstructure, considerable columnar precipitation is observed in the Bridgman sample, which is identified as iron-rich phase by energy dispersive spectrum (EDS) analysis.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:21 ,  Issue: 3 )