By Topic

Video Compression Using Nested Quadtree Structures, Leaf Merging, and Improved Techniques for Motion Representation and Entropy Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Marpe, D. ; Image & Video Coding Group, Fraunhofer Inst. for Telecommun.-Heinrich Hertz Inst., Berlin, Germany ; Schwarz, H. ; Bosse, S. ; Bross, B.
more authors

Abstract-A video coding architecture is described that is based on nested and pre-configurable quadtree structures for flexible and signal-adaptive picture partitioning. The primary goal of this partitioning concept is to provide a high degree of adaptability for both temporal and spatial prediction as well as for the purpose of space-frequency representation of prediction residuals. At the same time, a leaf merging mechanism is included in order to prevent excessive partitioning of a picture into prediction blocks and to reduce the amount of bits for signaling the prediction signal. For fractional-sample motion-compensated prediction, a fixed-point implementation of the maximal-order minimum-support algorithm is presented that uses a combination of infinite impulse response and FIR filtering. Entropy coding utilizes the concept of probability interval partitioning entropy codes that offers new ways for parallelization and enhanced throughput. The presented video coding scheme was submitted to a joint call for proposals of ITU-T Visual Coding Experts Group and ISO/IEC Moving Picture Experts Group and was ranked among the five best performing proposals, both in terms of subjective and objective quality.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:20 ,  Issue: 12 )