By Topic

A Hybrid Video Coder Based on Extended Macroblock Sizes, Improved Interpolation, and Flexible Motion Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

This paper describes a video coding technology proposal submitted by Qualcomm in response to a joint call for proposals (CfP) issued by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. The proposed video codec follows a hybrid coding approach based on temporal prediction, followed by transform, quantization, and entropy coding of the residual. Some of its key features are extended block sizes (up to 64 × 64), single pass switched interpolation filters with offsets, mode-dependent directional transforms for intra-coding, luma and chroma high precision filtering, geometric motion partitions, adaptive motion vector resolution and efficient 16-point transforms. It also incorporates internal bit-depth increase and modified quadtree-based adaptive loop filtering. Simulation results are presented to demonstrate the high compression efficiency achieved by the proposed video codec at the expense of moderate increase in encoding and decoding complexity compared to the advanced video coding standard (AVC/H.264). For the random access and low delay configurations, it achieved average bit rate reductions of 30.9% and 33.0% for equivalent peak signal-to-noise ratio, respectively, compared to the corresponding AVC anchors. The proposed codec scored highly in both subjective evaluations and objective metrics and was among the best-performing CfP proposals.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:20 ,  Issue: 12 )