Cart (Loading....) | Create Account
Close category search window

Electron and hole components of tunneling currents through an interfacial oxide-high-k gate stack in metal-oxide-semiconductor capacitors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Noor, Fatimah A. ; Physics of Electronic Materials Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia ; Abdullah, Mikrajuddin ; Sukirno ; Khairurrijal, K.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Two different components of tunneling current in the TiN/HfSiOxN/SiO2/p-Si(100) metal-oxide-semiconductor capacitor have been presented. The tunneling currents were calculated by taking into account a longitudinal-transverse kinetic energy coupling. The calculated tunneling currents were compared with that measured ones by employing the electron and hole effective masses and phase velocities as fitting parameters. It has been shown that hole tunneling currents dominate at low voltages whereas at high voltages the tunneling currents are mainly contributed by electrons. It has also been found that the effective mass of hole in the HfSiOxN layer is higher than that of electron. The gate electron and substrate hole velocities are 1×105 m/s independent of the HfSiOxN thickness. In addition, it is speculated that the electron and hole effective masses in the HfSiOxN layer perhaps increase as its thickness decreases.

Published in:

Journal of Applied Physics  (Volume:108 ,  Issue: 9 )

Date of Publication:

Nov 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.