By Topic

Direct active and reactive power regulation of grid connected voltage source converters using sliding mode control approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jiabing Hu ; Dept. of Electron. & Electr. Eng., Univ. of Sheffield, Sheffield, UK ; Bin Hu

This paper presents a new direct active and reactive power control (DPC) of three-phase grid connected voltage source converters (VSCs). The proposed DPC strategy employs a nonlinear sliding mode control scheme to directly calculate the required converter voltage so as to eliminate the active and reactive power errors without involving any synchronous coordinate transformations. Besides, no extra current control loops are required, thereby simplifying the system design and enhancing the transient performance. Constant converter switching frequency is achieved by using space vector modulation (SVM) which eases the design of the ac harmonic filter. Simulated results on a 100kVA grid connected VSC system are provided and compared with those of classic voltage-oriented vector control (VC) and conventional look-up-table (LUT) DPC. The proposed DPC provides enhanced transient performance similar to the LUT DPC and keeps the steady-state harmonic spectra at the same level as the VC.

Published in:

Industrial Electronics (ISIE), 2010 IEEE International Symposium on

Date of Conference:

4-7 July 2010