By Topic

Visual assessment of a real-time system design: a case study on a CNC controller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Namyun Kim ; Dept. of Comput. Eng., Seoul Nat. Univ., South Korea ; Minsoo Ryu ; Seongsoo Hong ; M. Saksena
more authors

We describe our experiments on a real-time system design, focusing on design alternatives such as scheduling jitter, sensor-to-output latency, intertask communication schemes and the system utilization. The prime objective of these experiments was to evaluate a real-time design produced using the period calibration method (Gerber et al., 1995) and thus identify the limitations of the method. We chose a computerized numerical control (CNC) machine as our target real-time system and built a realistic controller and a plant simulator. Our results were extracted from a controlled series of more than a hundred test controllers obtained by varying four test variables. This study unveils many interesting facts: average sensor-to-output latency is one of the most dominating factors in determining control quality; the effect of scheduling jitter appears only when the average sensor-to-output latency is sufficiently small; and loop processing periods are another dominating factor of performance. Based on these results, we propose a new communication scheme and a new objective function for the period calibration method

Published in:

Real-Time Systems Symposium, 1996., 17th IEEE

Date of Conference:

4-6 Dec 1996