By Topic

RUFD: A general-purpose, non-iterative and matrix-free CEM algorithm for solving electromagnetic scattering and radiation problems in the frequency domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mittra, R. ; Electromagn. Commun. Lab., Penn State Univ., University Park, PA, USA ; Yang, X. ; Panayappan, K. ; Yu, W.

In this paper, we introduce a new general-purpose Computational Electromagnetics (CEM) algorithm, called RUFD (Recursive Algorithm Frequency Domain), for solving electromagnetic radiation and scattering problems in the frequency domain. The method shares many attributes with the Finite Difference Time Domain (FDTD), though it generates the solution of Maxwell's equations in the frequency rather than in the time domain. The method is therefore well suited for dealing with dispersive media, as well as for deriving solutions for problems that involve high-Q structures. It is also considerably more efficient for constructing low frequency solutions, in comparison to the FDTD algorithm, which requires long run times when an accurate solution is desired at low frequencies.

Published in:

Electromagnetic Theory (EMTS), 2010 URSI International Symposium on

Date of Conference:

16-19 Aug. 2010