Cart (Loading....) | Create Account
Close category search window
 

Electrothermal Design Procedure to Observe RF Circuit Power and Linearity Characteristics With a Homodyne Differential Temperature Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Onabajo, M. ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA ; Altet, J. ; Aldrete-Vidrio, E. ; Mateo, D.
more authors

The focus in this paper is on the extraction of RF circuit performance characteristics from the dc output of an on-chip temperature sensor. Any RF input signal can be applied to excite the circuit under examination because only dissipated power levels are measured, which makes this approach attractive for online thermal monitoring and built-in test scenarios. A fully differential sensor topology is introduced that has been specifically designed for the proposed method by constructing it with a wide dynamic range, programmable sensitivity to dc, and RF power dissipation, as well as compatibility with CMOS technology. This paper also presents an outline of a procedure to model the local electrothermal coupling between heat sources and the sensor, which is used to define the temperature sensor's specifications as well as to predict the thermal signature of the circuit under test. A prototype chip with an RF amplifier and temperature sensor was fabricated in a conventional 0.18-μm CMOS technology. The proposed concepts were validated by correlating RF measurements at 1 GHz with the measured dc voltage output of the on-chip sensor and the simulation results, demonstrating that the RF power dissipation can be monitored and the 1-dB compression point can be estimated with less than 1-dB error. The sensor circuitry occupies a die area of 0.012 mm2, which can be shared when several on-chip locations are observed by placement of multiple temperature-sensing parasitic bipolar devices.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.