By Topic

Feasible and Optimal Path Planning in Strong Current Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Soulignac, M. ; Inst. Super. d''Electron. et du Numerique, Lille, France

This paper addresses the problem of path planning in strong current fields. In such situations, existing approaches are subject to incorrectness and incompleteness issues. That is, they may return physically infeasible paths or no path at all, even if a feasible path exists. That is why we propose here a new approach called the sliding wavefront expansion. This algorithm, which combine an appropriate cost function and continuous optimization techniques, guarantees the existence of a path with an arbitrary precision. The validity and the global optimality of the path are theoretically proven. Simulation results on realistic environments, which is based on actual wind charts, are also provided.

Published in:

Robotics, IEEE Transactions on  (Volume:27 ,  Issue: 1 )