Cart (Loading....) | Create Account
Close category search window

On-die Ring Oscillator Based Measurement Scheme for Process Parameter Variations and Clock Jitter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Omana, M. ; DEIS, Univ. of Bologna, Bologna, Italy ; Giaffreda, D. ; Metra, C. ; Mak, T.M.
more authors

We present a novel low cost scheme for the on-die measurement of either clock jitter, or process parameter variations. By re-using and properly modifying the Ring Oscillators (ROs) that are currently widely employed for process parameter variation measurement in high performance microprocessors, our proposed scheme can be easily set in either the process parameter variation measurement mode, or the clock jitter measurement mode, by acting on an external control signal. This way, during the test or debug phase, clock jitter can also be measured at negligible area and power costs with respect to process parameter variation measurement only. Our scheme is scalable in the provided clock jitter measurement resolution, while allowing the same process parameter variation measurement resolution as the currently employed RO based schemes. Moreover, due to its allowing both process parameter variation and clock jitter measurements, our scheme features accurate clock jitter measurement despite the possible presence of significant process parameter variations.

Published in:

Defect and Fault Tolerance in VLSI Systems (DFT), 2010 IEEE 25th International Symposium on

Date of Conference:

6-8 Oct. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.