By Topic

A behavior based malware detection scheme for avoiding false positive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fukushima, Y. ; Grad. Sch. of Inf. Sci. & Electr. Eng., Kyushu Univ., Fukuoka, Japan ; Sakai, A. ; Hori, Y. ; Sakurai, K.

The number of malware is increasing rapidly and a lot of malware use stealth techniques such as encryption to evade pattern matching detection by anti-virus software. To resolve the problem, behavior based detection method which focuses on malicious behaviors of malware have been researched. Although they can detect unknown and encrypted malware, they suffer a serious problem of false positives against benign programs. For example, creating files and executing them are common behaviors performed by malware, however, they are also likely performed by benign programs thus it causes false positives. In this paper, we propose a malware detection method based on evaluation of suspicious process behaviors on Windows OS. To avoid false positives, our proposal focuses on not only malware specific behaviors but also normal behavior that malware would usually not do. Moreover, we implement a prototype of our proposal to effectively analyze behaviors of programs. Our evaluation experiments using our malware and benign program datasets show that our malware detection rate is about 60% and it does not cause any false positives. Furthermore, we compare our proposal with completely behavior-based anti-virus software. Our results show that our proposal puts few burdens on users and reduces false positives.

Published in:

Secure Network Protocols (NPSec), 2010 6th IEEE Workshop on

Date of Conference:

5-5 Oct. 2010