Cart (Loading....) | Create Account
Close category search window
 

MIMO Closed Loop Identification of an Industrial Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Calanca, A. ; Dept. of Comput. Eng. & Syst. Sci., Univ. of Pavia, Pavia, Italy ; Capisani, L.M. ; Ferrara, A. ; Magnani, L.

This paper proposes a practical multi-input multi-output (MIMO) closed loop parameters identification procedure for robot manipulators. It is based on the weighted least squares (WLS) method, coupled with particular solutions to facilitate the estimation, reducing the noise effect. More precisely, a two steps procedure to reduce the condition number of the input data matrix with optimal trajectory planning, and a method to estimate the variances matrix to be used as a weight matrix for the WLS method are illustrated. Moreover, the identification problem is solved with reference to an MIMO coupled system. A closed loop identification is needed because the system is open loop unstable, and because the robot has to track an optimal reference input so as to correctly execute the identification procedure. Some solutions are also presented to overtake common identification problems, such as the bias of the estimated parameters, the presence of outliers, the necessity of balancing the kinematics of the third link, and the reduction of the sensitivity to noise of the estimate. The presented procedure has been successfully experimentally tested on a COMAU SMART3-S2 industrial manipulator used in a planar configuration.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:19 ,  Issue: 5 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.