By Topic

Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Hung-Wei Chiu ; Dept. of Electron. Eng., Nat. Taipei Univ. of Technol., Taipei, Taiwan ; Mu-Lien Lin ; Chii-Wann Lin ; I-Hsiu Ho
more authors

This paper presents the implementation of a batteryless CMOS SoC with low voltage pulsed radio-frequency (PRF) stimulation. This implantable SoC uses 402 MHz command signals following the medical implanted communication system (MICS) standard and a low frequency (1 MHz) for RF power transmission. A body floating type rectifier achieves 84% voltage conversion ratio. A bi-phasic pulse train of 1.4 V and 500 kHz is delivered by a PRF driver circuit. The PRF parameters include pulse duration, pulse frequency and repetition rate, which are controllable via 402 MHz RF receiver. The minimal required 3 V RF Vin and 2.2 V VDDr is achieved at 18 mm gap. The SoC chip is fabricated in a 0.35 μm CMOS process and mounted on a PCB with a flexible spiral antenna. The packaged PRF SoC was implanted into rats for the animal study. Von Frey was applied to test the mechanical allodynia in a blinded manner. This work has successfully demonstrated that implanted CMOS SoC stimulating DRG with 1.4 V, 500 kHz PRF could significantly reduce spinal nerve ligation (SNL) induced mechanical allodynia for 3-7 days.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:4 ,  Issue: 6 )