By Topic

Sambot: A Self-Assembly Modular Robot System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hongxing Wei ; School of Mechanical Engineering and Automation, Beihang University, Beijing, China ; Youdong Chen ; Jindong Tan ; Tianmiao Wang

The design and structure of a self-assembly modular robot (Sambot) are presented in this paper. Each module has its own autonomous mobility and can connect with other modules to form robotic structures with different manipulation abilities. Sambot has a versatile, robust, and flexible structure. The computing platform provided for each module is distributed and consists of a number of interlinked microcontrollers. The interaction and connectivity between different modules is achieved through infrared sensors and Zigbee wireless communication in discrete state and control area network bus communication in robotic configuration state. A new mechanical design is put forth to realize the autonomous motion and docking of Sambots. It is a challenge to integrate actuators, sensors, microprocessors, power units, and communication elements into a highly compact and flexible module with the overall size of 80 mm × 80 mm × 102 mm. The work describes represents a mature development in the area of self-assembly distributed robotics.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:16 ,  Issue: 4 )