By Topic

InN p-i-n Nanowire Solar Cells on Si

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hieu Pham Trung Nguyen ; Department of Electrical and Computer Engineering, McGill University, Montreal, Canada ; Yi-Lu Chang ; Ishiang Shih ; Zetian Mi

In this paper, we report the first experimental demonstration of InN nanowire solar cells. By employing an in situ deposited In seeding layer, we have achieved electronically pure, nearly intrinsic InN nanowires directly on Si(1 1 1) substrates by molecular beam epitaxy. The growth and characterization of Si- and Mg-doped InN nanowires is also investigated, which can exhibit superior structural and optical properties. We have further studied the epitaxial growth, fabrication, and characterization of InN:Si/i-InN and InN:Mg/i-InN/InN:Si axial nanowire structures on p-type and n-type Si(1 1 1) substrates, respectively. With the use of a CdS surface passivation, InN:Mg/i-InN/InN:Si nanowire homojunction solar cells exhibit a promising short-circuit current density of ~14.4 mA/cm2 and power-conversion efficiency of ~0.68% under simulated one-sun (AM 1.5G) illumination. This work suggests the first successful demonstration of p-type doping in InN nanowires and also constitutes important progress for the development of InGaN-based, full-solar-spectrum photovoltaics.

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:17 ,  Issue: 4 )