By Topic

Noise impact on error-free image compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lo, S.-C.B. ; Dept. of Radiol. Georgetown Univ., Washington, DC, USA ; Krasner, B. ; Mun, S.K.

Some radiological images with different levels of noise have been studied using various decomposition methods incorporated with Huffman and Lempel-Ziv coding. When more correlations exist between pixels, these techniques can be made more efficient. However, additional noise disrupts the correlation between adjacent pixels and leads to a less compressed result. Hence, prior to a systematic compression in a picture archiving and communication system (PACS), two main issues must be addressed: the true information range which exists in a specific type of radiological image, and the costs and benefits of compression for the PACS. It is shown that with laser film digitized magnetic resonance images, 10-12 b are produced, although the lower 2-4 b show the characteristics of random noise. The addition of the noise bits is shown to adversely affect the amount of compression given by various reversible compression techniques. The sensitivity of different techniques to different levels of noise is examined in order to suggest strategies for dealing with noise

Published in:

Medical Imaging, IEEE Transactions on  (Volume:9 ,  Issue: 2 )