By Topic

Fast detection of venous air embolism in Doppler heart sound using the wavelet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chan, B.C.B. ; Dept. of Electr. & Electron. Eng., Hong Kong Univ., Hong Kong ; Chan, F.H.Y. ; Lam, F.K. ; Ping-Wing Lui
more authors

The introduction of air bubbles into the systemic circulation can result in significant morbidity. Real-time monitoring of continuous heart sound in patients detected by precordial Doppler ultrasound is, thus, vital for early detection of venous air embolism (VAE) during surgery. In this study, the multiscale feature of wavelet transforms (WT's) is exploited to examine the embolic Doppler heart sound (DHS) during intravenous air injections in dogs. As both humans and dogs share similar physiological conditions, the authors' methods and results for dogs are expected to be applicable to humans. The WT of DHS at scale 2 j(j=1,2) selectively magnified the power of embolic, but not the normal, heart sound. Statistically, the enhanced embolic power was found to be sensitive (P<0.01 at 0.01 ml of injected air) and correlated significantly (P<0.0005, τ=0.83) with the volume of injected air from 0.01 to 0.10 ml. A fast detection algorithm of O(N) complexity with unit complexity constant for VAE was developed (processing speed=8 ms per heartbeat), which confirmed the feasibility of real-time processing for both humans and dogs.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:44 ,  Issue: 4 )