By Topic

Development of a simulated data set for the SeaWiFS mission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
W. W. Gregg ; NASA Goddard Space Flight Center, Greenbelt, MD, USA ; F. S. Patt ; R. H. Woodward

A realistic simulated data set is essential for mission readiness preparations and can potentially assist in all phases of ground support for a future mission. Such a data set was created for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), a global ocean color mission due for launch in 1997. This data set incorporates a representation of virtually every known aspect of the flight mission. Thus, it provides a high fidelity data set for testing most phases of the ground system, including data processing, data transfers, calibration and validation, quality control, and mission operations. The data set is constructed for a seven-day period, March 25-31, 1994. Specific features of the data set: it includes Global Area Coverage (GAC), recorded Local Area Coverage (LAC), and real-time High Resolution Picture Transmission (HRPT) data for the seven-day period; it includes a realistic orbit which is propagated using a Brouwer-Lyddane model with drag; the data correspond to a command schedule based on the orbit for this seven-day period; it includes total (at-satellite) radiances for ocean, land, clouds, and ice; it utilizes a high-resolution land/sea mask; it includes actual SeaWiFS spectral responses; it includes the actual sensor saturation responses; it is formatted according to current onboard data structures; and it includes corresponding telemetry (instrument and spacecraft) data. The methods are described and some examples of the output are given

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:35 ,  Issue: 2 )