By Topic

Effect of shadowing on electromagnetic scattering from rough ocean wavelike surfaces at small grazing angles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
West, J.C. ; Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA

A hybrid moment-method/geometrical-theory-of-diffraction technique (MM/GTD) has been implemented to numerically calculate the electromagnetic scattering from one-dimensionally rough surfaces at extreme illumination angles (down to 0° grazing). The hybrid approach allows the extension of the modeled scattering surface to infinity, avoiding the artificial edge diffraction that prevents use of the standard moment method at the smallest grazing angles, Numerical calculation of the backscattering from slightly rough large-scale surfaces approximating ocean wave features shows that roughness in strongly shadowed regions can contribute significantly to the total backscatter at vertical polarization. This is observed when the shadowing obstacle is several wavelengths high, and the magnitude of the shadow-region contribution does not depend on the radius-of-curvature of the shadowing feature. Strongly shadowed roughness does not significantly contribute to the backscatter at horizontal polarization, although weakly shadowed roughness near the incidence shadow boundary does. The calculations indicate that a shadowing-corrected two-scale model may be able to predict the distributed-surface portion of the sea-surface scattering from the ocean surface at grazing angles down to about 15°, but at lower grazing the shadowing and large-scale curvature of the surface prevent the establishment of a Bragg resonance and invalidate the model

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:35 ,  Issue: 2 )