By Topic

Human Gait Recognition by Integrating Motion Feature and Shape Feature

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bing Sun ; Inst. of Image Process. & Pattern Recognition, Shanghai Jiao Tong Univ., Shanghai, China ; Junchi Yan ; Yuncai Liu

Gait is thought to be the most effective feature for human recognition in the distance. For optimal performance, the feature should include as many different types of information as possible, so in this paper, we present an integrated feature, which integrates motion feature and shape feature based on the Bayesian theory. For motion feature, we use shape variation-based frieze pattern (SVB frieze pattern) as the basis, since it can solve the ball or backpack problems very well, then we match the SVB frieze pattern feature by dynamic time warping (DTW). For shape feature, we use gait energy image (GEI) as the basis, since it is less sensitive to the silhouette noise, then we extract further information by histograms of oriented gradients (HOG) and do the dimensionality reduction by coupled subspaces analysis (CSA) and discriminant analysis with tensor representation (DATER). The proposed approach is tested on the CMU MoBo gait database. The result shows that the proposed approach is an efficient way in increasing the accuracy.

Published in:

Multimedia Technology (ICMT), 2010 International Conference on

Date of Conference:

29-31 Oct. 2010