By Topic

Merging of Topic Maps Based on Corpus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yong Xue ; Sch. of Electron. & Inf. Eng., Xi'an Jiaotong Univ., Xi'an, China ; Weitao Liu ; Boqin Feng ; Wen Cao

The distributed topic maps often need be merged when they are used for knowledge representation, the similarity calculation of two topics is a critical factor which affects the quality of final topic maps directly. In this paper, we present a novel approach to calculate the similarity of topics and merge the distributed topic maps, the method not only implements the syntax comparison between the topics, but constructs a domain-specific dictionary to resolve the low precision of topic semantic similarity calculation using the common dictionary purely, the massive texts are gathered form Wikipedia and Google snippets as corpus, on which the similarity score of the specific terms is calculated and stored to dictionary by a semantic text comparison method. The experiment indicates the new method can resolve particularly the problems of the common dictionary lacking many technical terms.

Published in:

Electrical and Control Engineering (ICECE), 2010 International Conference on

Date of Conference:

25-27 June 2010