Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Optimal Sensing Time and Power Allocation in Multiband Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stotas, S. ; Dept. of Electron. Eng., King''s Coll. London, London, UK ; Nallanathan, A.

Cognitive radio is an emerging technology that aims for efficient spectrum usage by allowing unlicensed (secondary) users to access licensed frequency bands under the condition of protecting the licensed (primary) users from harmful interference. The latter condition constraints the achievable throughput of a cognitive radio network, which should therefore access a wideband spectrum in order to provide reliable and efficient services to its users. In this paper, we study the problem of designing the optimal sensing time and power allocation strategy, in order to maximize the ergodic throughput of a cognitive radio that employs simultaneous multiband detection and operates under two different schemes, namely the wideband sensing-based spectrum sharing (WSSS) and the wideband opportunistic spectrum access (WOSA) scheme. We consider average transmit and interference power constraints for both schemes, in order to effectively protect the primary users from harmful interference, propose two algorithms that acquire the optimal sensing time and power allocation under imperfect spectrum sensing for the two schemes and discuss the effect of the average transmit and interference power constraint on the optimal sensing time. Finally, we provide simulation results to compare the two schemes and validate our theoretical analysis.

Published in:

Communications, IEEE Transactions on  (Volume:59 ,  Issue: 1 )