By Topic

Feature Selection and Classification in Supporting Report-Based Self-Management for People with Chronic Pain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yan Huang ; Computer Science Research Institute , School of Computing and Mathematics, University of Ulster, Jordanstown, U.K. ; Huiru Zheng ; Chris Nugent ; Paul McCullagh
more authors

Chronic pain is a common long-term condition that affects a person's physical and emotional functioning. Currently, the integrated biopsychosocial approach is the mainstay treatment for people with chronic pain. Self-reporting (the use of questionnaires) is one of the most common methods to evaluate treatment outcome. The questionnaires can consist of more than 300 questions, which is tedious for people to complete at home. This paper presents a machine learning approach to analyze self-reporting data collected from the integrated biopsychosocial treatment, in order to identify an optimal set of features for supporting self-management. In addition, a classification model is proposed to differentiate the treatment stages. Four different feature selection methods were applied to rank the questions. In addition, four supervised learning classifiers were used to investigate the relationships between the numbers of questions and classification performance. There were no significant differences between the feature ranking methods for each classifier in overall classification accuracy or AUC (p >; 0.05); however, there were significant differences between the classifiers for each ranking method (p <; 0.001). The results showed the multilayer perceptron classifier had the best classification performance on an optimized subset of questions, which consisted of ten questions. Its overall classification accuracy and AUC were 100% and 1, respectively.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:15 ,  Issue: 1 )