By Topic

Insertion Loss and Crosstalk Analysis of a Fiber Switch Based on a Pixelized Phase Modulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
David Sinefeld ; Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem, Israel ; Dan M. Marom

We analyze the performance of a spatial fiber switching system when using a pixelized mirror, such as a LCoS or MEMS spatial light modulator, in place of a large tilting micromirror. Our findings demonstrate the dependence of insertion losses on tilt angles or fiber counts, and the dependence of the crosstalk in the number of phase quantization levels and random phase errors. The former effects can be minimized by satisfying a relationship between the tilt angle to a fiber, the pitch of the array, and the optical wavelength.

Published in:

Journal of Lightwave Technology  (Volume:29 ,  Issue: 1 )