By Topic

HaRP: Rapid Packet Classification via Hashing Round-Down Prefixes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fong Pong ; Broadcom Corp., Santa Clara, CA, USA ; Nian-Feng Tzeng

Packet classification is central to a wide array of Internet applications and services, with its approaches mostly involving either hardware support or optimization steps needed by software-oriented techniques (to add precomputed markers and insert rules in the search data structures). Unfortunately, an approach with hardware support is expensive and has limited scalability, whereas one with optimization fails to handle incremental rule updates effectively. This work deals with rapid packet classification, realized by hashing round-down prefixes (HaRP) in a way that the source and the destination IP prefixes specified in a rule are rounded down to “designated prefix lengths” (DPL) for indexing into hash sets. HaRP exhibits superb hash storage utilization, able to not only outperform those earlier software-oriented classification techniques but also well accommodate dynamic creation and deletion of rules. HaRP makes it possible to hold all its search data structures in the local cache of each core within a contemporary processor, dramatically elevating its classification performance. Empirical results measured on an AMD 4-way 2.8 GHz Opteron system (with 1 MB cache for each core) under six filter data sets (each with up to 30 K rules) obtained from a public source unveil that HaRP enjoys up to some 3.6× throughput level achievable by the best known decision tree-based counterpart, HyperCuts (HC).

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 7 )