By Topic

Optimizing the Performance of Virtual Machine Synchronization for Fault Tolerance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Zhu ; Peking University, Beijing ; Zhefu Jiang ; Zhen Xiao ; Xiaoming Li

Hypervisor-based fault tolerance (HBFT), which synchronizes the state between the primary VM and the backup VM at a high frequency of tens to hundreds of milliseconds, is an emerging approach to sustaining mission-critical applications. Based on virtualization technology, HBFT provides an economic and transparent fault tolerant solution. However, the advantages currently come at the cost of substantial performance overhead during failure-free, especially for memory intensive applications. This paper presents an in-depth examination of HBFT and options to improve its performance. Based on the behavior of memory accesses among checkpointing epochs, we introduce two optimizations, read-fault reduction and write-fault prediction, for the memory tracking mechanism. These two optimizations improve the performance by 31 percent and 21 percent, respectively, for some applications. Then, we present software superpage which efficiently maps large memory regions between virtual machines (VM). Our optimization improves the performance of HBFT by a factor of 1.4 to 2.2 and achieves about 60 percent of that of the native VM.

Published in:

IEEE Transactions on Computers  (Volume:60 ,  Issue: 12 )