By Topic

Using Compositionality to Formally Model and Analyze Systems Built of a High Number of Components

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bindelli, S. ; DEI, Politec. di Milano, Milan, Italy ; Nitto, E.D. ; Furia, C.A. ; Rossi, M.

When dependability of systems with a large number of components is a concern, being able to model and analyze their properties, especially non-functional ones, in a formal and automated way becomes essential. Often, however, the application of formal methods and automated reasoning is seen by practitioners as complex and time consuming. Compositional techniques can help modify this belief. In this paper we show how a compositional modeling and verification technique can be applied to the analysis of distributed systems with numerous interacting nodes. We automate the proof by exploiting a SAT-based tool. We demonstrate the validity of the resulting approach by applying it to an autonomic service-based system that manages, in a coordinated peer-to-peer manner, electricity consumption in a geographical area. In particular, we show that in this case the time needed for performing the proof is remarkably shorter than in the case in which we adopt a non-compositional approach.

Published in:

Engineering of Complex Computer Systems (ICECCS), 2010 15th IEEE International Conference on

Date of Conference:

22-26 March 2010