By Topic

Systolic algorithms/architectures for division-free linear system solving

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peng, S. ; Aizu Univ., Fukushima, Japan ; Sedukhin, S.G.

Division-free algorithms for solving the linear algebra problems and its applications in signal/image processing have attracted interests for parallel processing. In this paper the design of systolic array processors for solving linear systems of equations using division-free Gaussian elimination method is presented. The design is based on a systematic approach which constructs array processors systematically by first investigating parallel versions of the division-free algorithm and their three dimensional dependency graphs, and then generating the planar systolic array processors by projecting the dependency graph along properly selected directions. The resulting array processors are synthesized and analyzed. It is shown that some array processors are optimal. The key for designing an optimal array processor Is to design a parallel algorithm whose dependency graph is a well-structured. The array processors are optimal in terms of number of processing elements, number of input/output ports, time of processing and pipelining period

Published in:

Algorithms & Architectures for Parallel Processing, 1996. ICAPP 96. 1996 IEEE Second International Conference on

Date of Conference:

11-13 Jun 1996