Cart (Loading....) | Create Account
Close category search window

Improving the Performance of Wireless Ad Hoc Networks Through MAC Layer Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kaynia, M. ; Dept. of Electron. & Telecommun., Norwegian Univ. of Sci. & Technol., Trondheim, Norway ; Jindal, N. ; Oien, G.E.

In this paper, the performance of the ALOHA and CSMA MAC protocols are analyzed in spatially distributed wireless networks. The main system objective is correct reception of packets, and thus the analysis is performed in terms of outage probability. In our network model, packets belonging to specific transmitters arrive randomly in space and time according to a 3-D Poisson point process, and are then transmitted to their intended destinations using a fully-distributed MAC protocol. A packet transmission is considered successful if the received SINR is above a predefined threshold for the duration of the packet. Accurate bounds on the outage probabilities are derived as a function of the transmitter density, the number of backoffs and retransmissions, and in the case of CSMA, also the sensing threshold. The analytical expressions are validated with simulation results. For continuous-time transmissions, CSMA with receiver sensing (which involves adding a feedback channel to the conventional CSMA protocol) is shown to yield the best performance. Moreover, the sensing threshold of CSMA is optimized. It is shown that introducing sensing for lower densities (i.e., in sparse networks) is not beneficial, while for higher densities (i.e., in dense networks), using an optimized sensing threshold provides significant gain.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:10 ,  Issue: 1 )

Date of Publication:

January 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.