By Topic

Assessing Accelerator-Based HPC Reverse Time Migration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Araya-Polo, M. ; Barcelona Supercomput. Center, Barcelona, Spain ; Cabezas, J. ; Hanzich, M. ; Pericas, M.
more authors

Oil and gas companies trust Reverse Time Migration (RTM), the most advanced seismic imaging technique, with crucial decisions on drilling investments. The economic value of the oil reserves that require RTM to be localized is in the order of 1013 dollars. But RTM requires vast computational power, which somewhat hindered its practical success. Although, accelerator-based architectures deliver enormous computational power, little attention has been devoted to assess the RTM implementations effort. The aim of this paper is to identify the major limitations imposed by different accelerators during RTM implementations, and potential bottlenecks regarding architecture features. Moreover, we suggest a wish list, that from our experience, should be included as features in the next generation of accelerators, to cope with the requirements of applications like RTM. We present an RTM algorithm mapping to the IBM Cell/B.E., NVIDIA Tesla and an FPGA platform modeled after the Convey HC-1. All three implementations outperform a traditional processor (Intel Harpertown) in terms of performance (10x), but at the cost of huge development effort, mainly due to immature development frameworks and lack of well-suited programming models. These results show that accelerators are well positioned platforms for this kind of workload. Due to the fact that our RTM implementation is based on an explicit high order finite difference scheme, some of the conclusions of this work can be extrapolated to applications with similar numerical scheme, for instance, magneto-hydrodynamics or atmospheric flow simulations.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 1 )